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SUMMARY

The unsteady incompressible Navier—Stokes equations are formulated in terms of vorticity and stream-
function in generalized curvilinear orthogonal co-ordinates to facilitate analysis of flow configurations with
general geometries. The numerical method developed solves the conservative form of the vorticity transport
equation using the alternating direction implicit method, whereas the streamfunction equation is solved by
direct block Gaussian elimination. The method is applied to a model problem of flow over a backstep in a
doubly infinite channel, using clustered conformal co-ordinates. One-dimensional stretching functions,
dependent on the Reynolds number and the asymptotic behaviour of the flow, are used to provide suitable
grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions.
The optimum grid distribution selected attempts to honour the multiple length scales of the separated flow
model problem. The asymptotic behaviour of the finite differenced transport equation near infinity is
examined and the numerical method is carefully developed so as to lead to spatially second-order-accurate
wiggle-free solutions, i.e. with minimum dispersive error. Results have been obtained in the entire laminar
range for the backstep channel and are in good agreement with the available experimental data for this flow
problem, prior to the onset of three-dimensionality in the experiment.
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1. INTRODUCTION

The accurate simulation of moderately high-Reynolds-number viscous flows in and around
complex internal configurations of importance in turbomachinery applications is a formidable
task. The flow fields for these complex configurations may involve any or all of the following
features: unsteadiness, three-dimensionality, geometrical complexities, streamwise separation,
recirculation, compressibility, turbulence, etc. For accurate prediction of aerodynamic losses and
heat transfer rates in such configurations, it is important that the viscous flow field be predicted
correctly. The present study is directed towards accurate simulation of viscous flows involving
streamwise separation and unsteadiness, in addition to other features that may be present in the
flow.

For viscous flows in configurations of practical interest, the Reynolds number is generally quite
high. Nevertheless, the classical boundary layer theory is inadequate for prediction of such flows
as they contain regions of separated flow, massive blowing, etc., where the boundary layer is
sufficiently displaced from the body surface so as to alter the inviscid pressure distribution
significantly. For this class of problems, where a significant displacement effect prevails, two
viable approaches are available for predicting the viscous flow fields: (i) the first method is based
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on an inviscid—viscous strong interaction analysis utilizing localized flow regions, whereas (ii) the
second method consists of using, in the entire region of interest, a single set of equations which
have the necessary mutual dependence between the inviscid and viscous flows built into them.
Davis and Werle! have reviewed the progress of the strong interaction analysis, which is useful in
describing a large class of boundary layer departure flows. The theoretical basis for the various
strong interaction models lies in multistructured asymptotic analyses.” ™ © In these analyses the
subscale flow structure embedded under the boundary-layer-like region is considered rigorously
and the strong interaction approach is formally shown to provide an exact representation of the
flow for asymptotically large Reynolds numbers. In the flow field of interest, as the
displacement—interaction effects become significant, the ‘triple-deck’ theory aids in establishing
the relative orders of the length scales required for the adjustment of a classical boundary layer as
it enters a region of strong interaction and separation. However, for complex internal flows at
finite Reynolds number, the prevailing flow may differ significantly from the predictions of the
strong interaction model.

The second class of methods used in obtaining solutions for internal flows, in which viscous
phenomena considerably alter the inviscid pressure field, is based on fully viscous analyses. In
these analyses a single set of equations, valid in the entire flow field, is used, thus avoiding the need
for dividing the flow field into inviscid and viscous regions. Of the three prominent approaches
available in this category, two are based on reduced forms of the Navier—Stokes equations,
whereas the third uses the complete Navier—Stokes equations. In the first approach the time-
dependent thin-shear-layer equations are used’ to successfully compute separated flows; this
approach has been widely used. Rubin and co-workers have also calculated separated flows using
the steady thin-layer form of the Navier—Stokes equations with the streamwise pressure gradient
term represented by a forward difference approximation. The results obtained using this ap-
proach have been summarized by Rubin.® In the second approach the complete pressure
interaction is included by using a Poisson equation for pressure, in lieu of the continuity equation.
This has been termed a semi-elliptic formulation by Ghia et al.® who employed it to successfully
compute separated flow inside a doubly infinite channel with an asymmetric constriction, using
primitive variables. Ghia and Ghia'® have proposed yet another semi-elliptic formulation for
compressible viscous flow, which efficiently computes separated flow. Finally, separated internal
flows are calculated using the complete Navier—Stokes equations by many researchers (see e.g.
References 11-14). With this last approach it is possible to compute flows with large separated
regions, where shear layers are not necessarily aligned with any one of the co-ordinates.
Moreover, since the solution of the complete Navier—Stokes equations is generally based on the
time-dependent equations, both unsteady as well as steady solutions can be determined numeri-
cally by explicit or implicit methods.

In general, implicit numerical methods display improved stability characteristics as compared
to explicit methods, at the expense of increased arithmetic operations count. Therefore an implicit
method for the solution of algebraic equations is recommended whenever the step size limitation
imposed by the stability requirement for an explicit method is significantly less than the step size
limitation imposed by the time scale resolution of the physical problem. Furthermore, the
presence of multiple scales in a separated flow contributes to increased stiffness of the non-linear
system of discretized algebraic equations and may also suggest the use of implicit solution
techniques. Osswald and Ghia'* have developed a direct method for the solution of two-
dimensional, unsteady, incompressible Navier—Stokes equations in generalized orthogonal co-
ordinates. This unsteady analysis was formulated using the derived variables, namely, vorticity o
and streamfunction . In this method the streamfunction equation was solved using a block
Gaussian elimination (BGE) technique. This direct Dirichlet Poisson solver in generalized



INCOMPRESSIBLE MASSIVELY SEPARATED VISCOUS FLOWS 1027

orthogonal co-ordinates is very accurate and efficient, with computational gains of an order of
magnitude over the corresponding iterative schemes. In a recent review of fast solvers for elliptic
equations, Stiiben'> has shown that the Dirichlet Poisson problem with a 256 x 256 grid in
Cartesian co-ordinates required one to two orders of magnitude higher computing time when
solved by iterative schemes such as the alternating direction implicit (ADI) method and the
successive over-relaxation (SOR) method, respectively, as compared to the time required by a
direct solver such as that of Buneman. The efficiency and accuracy of the fast solvers make them
very well suited for the solution of the Poisson equation in the unsteady analysis of flows using the
complete Navier—Stokes equations.

The primary objective of the present study is to provide an accurate and efficient direct method
for the solution of two-dimensional unsteady incompressible Navier—Stokes equations using
orthogonal curvilinear co-ordinates. To achieve this goal, it was decided to refine the method
developed by Osswald and Ghia'* by incorporating in it the following improvements which
could lead to a more realistic simulation of physical problems and increase the accuracy and
efficiency of the overall solutions:

(i) For aclass of internal flow configurations, with the length in the streamwise direction very
large compared to the length in the normal direction, an estimate is made of all the local
scales of the flow problems in order to provide a clustered grid distribution which honours
these individual scales.

(ii) With the aid of an estimate of the asymptotic metric coefficients, a reduced form of the
governing equations is obtained near infinity and the numerical solutions of these
equations are used to provide consistent inflow and outflow boundary conditions.

(iii) The separated flow model problem selected is one for which laser—-Doppler anemometer
experimental data are available, so that the results obtained using the present analysis can
be meaningfully assessed by comparison with these data.

2. GOVERNING EQUATIONS IN GENERALIZED ORTHOGONAL
CO-ORDINATES

A considerable number of numerical simulations of 2D, laminar incompressible viscous flows
have been obtained using the vorticity—streamfunction (w, ) system. There are definite advan-
tages in using this system as compared to the primitive variable (u, v, p) system. In this study it
has been preferred to employ the (w, ¥ ) system. The form of the governing differential equations
and the notation used parallel those of Osswald and Ghia.!* The conservation form of the
two-dimensional, unsteady, incompressible Navier—Stokes equations, in terms of the vorticity «
and the streamfunction ¢, consist of a temporally parabolic, spatially elliptic vorticity transport

equation

Jw t _,
—_— . = — 1
ar +V-(wV) ReV , )

together with an elliptic Poisson equation for the streamfunction
Viy = —w. 2)

Here Re is the Reynolds number of the flow and the streamfunction is defined through the
relation
V=Vy xk 3)

where k is the unit vector normal to the plane of the flow and V is the total velocity vector. A
general orthogonal curvilinear co-ordinate system (¢!, £2) is used in this study to provide non-
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uniform surface-oriented co-ordinates for arbitrary geometries. The new ( £, £2) co-ordinates can
be related to the inertial Cartesian co-ordinate system (x!, x2) by an admissible co-ordinate
transformation &'(x!, x?) e x/(&1, £2),i,j = 1, 2. In this co-ordinate system equations (1) and (2)
take the following form:

ow 0 oy 0 il 1 0 gzzﬁ‘i’_ i_ 9115_(9
Jg?a?*@(‘"@)‘ac—z(‘”a?)‘ﬁ[@(%ac*%ae(%acz)] @

0 [ gz W 0 (g1 Y _
i Gt ) o Gt ) = - oo ®

Here g,; are the elements of the covariant metric tensor and are defined as

2 [ ox* [ ox*
w=£(5) () “”

and g is the determinant of the metric tensor. Since the (¢?, £2) co-ordinate system is assumed
orthogonal in the present study,

and

g12 = g2, =0 (orthogonality condition),
so that

g9 =911922 (6b)

and
gdi11 922

= 1. 6
JiJe (6¢)

For a general orthogonal co-ordinate transformation the metric coefficients f s 911 /\/ g and

d22/ \/ g will be functions of both ¢! and £2, so that equations (4) and (5) are, in general, not

separable. For orthogonal co-ordinates the metric elements are related to the scale factors as

gi1 = h, and \/gn = h,; hence the metric coefficients g“/\/g and gzz/\/g can be written as
11 _ (411

hy
g g22 hy

These ratios in equations (6d, €) represent the aspect ratio of a general curvilinear element in the
physical plane corresponding to an infinitesimal square element in the transformed plane. Also,
the elemental area dA in the physical plane is related to the corresponding area in the transformed
plane as d4 = \/g derdeR, :

Use of equations (4) and (5), together with appropriate boundary conditions for @ and i, can
lead to the formulation of an appropriate boundary value problem for the flow. However, the
discussion on the boundary conditions will be deferred until the model flow problem to be
analysed has been selected. The governing equations (4) and (5) form a coupled set of non-linear
equations and the numerical method used to obtain their solutions is discussed next.

and 19723 = [Pz }2 (6d, €)

g1 hy

3. NUMERICAL ANALYSIS OF THE DISCRETE EQUATIONS

3.1. Preliminaries

The co-ordinate transformation referred to in Section 2 is so chosen as to transform the
physical region R to a unit square in the computational plane (&2, ¢2). A uniform (N + 1,
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M + 1) finite difference grid A is used and is defined as

A={(&,EDNE =i(AE"), &} =j(AEY)}; 0<i<N+1,0<j<M+1, M
with
AE! = ! and AE? = !
N +1 M+ 1

Thus the region R is comprised of N + 1 and M + 1 computational intervals along the £! and ¢2
co-ordinate directions respectively. The cell aspect ratio f§ in the computational plane is given as
B = (AE'/AE?) and is maintained constant. For convenience, the following nomenclature is
introduced for the metric coefficients:

G=\g9 Gll=g,,/\/9=/(911/922), G228 =g,/ /gB? G22= \/gzz/Jgu(é)

The spatial derivatives are approximated by appropriate finite difference quotients, using at
most three grid points in a given direction. Keeping the spatial differences compact facilitates the
implementation of the boundary conditions to second-order accuracy and aids in the overall
stability of the algorithm. Consequently, central differences are used for both convective and
diffusive derivatives in the governing equations. It is significant to note that, in this study, even
with central difference approximations for all spatial derivatives, no artificial dissipation is added
to dampen the high-frequency errors, but the latter are carefully annihilated through appropriate
resolution of the various length scales of the problem.

3.2. Alternating direction implicit (ADI) method for vorticity transport equation

The conservative form of the two-dimensional vorticity transport equation (4) is differenced
using a uniform (N + 1, M + 1) grid A defined by equation (7) and the resulting non-linear
algebraic equations are solved using the ADI technique as described by Osswald and Ghia.'* In
this method the transport equation at time level ¢, . , is discretized with the streamfunction being
frozen at the time level £,. As a result of this linearization, the formal temporal accuracy of the
scheme is O(At,). For spatial discretization, a typical computational cell is shown sketched in
Figure 1. For consistent differencing of the conservation form of the differential equations, the
metric coefficients (G11);, ; and (G228), ; are evaluated at the staggered half-grid point locations,
whereas the metric coefficient G, ;, the solution field functions w; ;, ¥; ; and the source term g; ;
are evaluated at the cell corners. The ADI form of the discrete equations is arrived at by
approximate factorization, which simplifies the computational algorithm to a sequence of
one-dimensional solution processes. First, the intermediate vorticity field o ;, with its appro-
priate boundary conditions, is described by a tridiagonal matrix problem. Similarly, the final

e
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Figure 1. Typical computational cell and location of variables
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vorticity w7 !, with its own boundary conditions, forms a second tridiagonal matrix problem.
These matrix problems are solved sequentially using the Thomas algorithm, which is a special
form of the direct Gaussian elimination procedure. This calculation requires 28(N - M) + 24(N)
floating point multiplications. The solution of the discrete transport equation provides a transient

flow simulation with a formal truncation accuracy O[At,, (AEY)?, (AE?)?].

3.3. Block Gaussian elimination (BGE) method

For the solution of the discrete Poisson problem on a rectangular domain, considerable effort
has been focused on the efficient direct methods of Buneman and Hockney as presented in
References 1619 using Cartesian co-ordinates. Schumann and Sweet?® extended Buneman’s
cyclic reduction technique to include a very special class of separable non-Cartesian co-ordinates,
whereas Schwarztrauber?! has provided the extension of Buneman’s method to treat the general
separable elliptic equation. For the discrete Poisson problem in completely general orthogonal
co-ordinates, Osswald and Ghia'4 have provided the highly competitive direct block Gaussian
elimination method, which is accurate and efficient and is briefly summarized next.

3.3.1. The matrix Dirichlet Poisson problem in generalized orthogonal co-ordinates. The
Dirichlet Poisson problem is formulated using a general scalar field function ¢ in some arbitrary
orthogonal curvilinear co-ordinate system (&?, £2) such that

W<%%)+W(%a_g>=‘/‘”(“” in R, )
with
¢ =d(&,E?) on OR. (9b)

In this equation s(&?, £2) is the known source term and d (¢, £2) represents the given Dirichlet
boundary conditions. Use of the grid A and central difference approximations for the spatial
derivatives appearing in equation (9a) results in the discretized equation

G228, _ 1 ji—1,; + Gl ;1 ;-1 — (G228, ;+ G11, ;_, + G11, ; + G22B; ;) ¢; ;

+ Gl1; ;b ;41 + G22B; ;@i 1, ;= (AE?)2 Gy s, ;. (10)
The Dirichlet boundary conditions are given as
¢i;=4dj=d(¢},E}) on 0A. (11)

The formal truncation accuracy of equation (10) is O [(A¢!)?, (A£2)?]. Equation (10) can be
written symbolically in matrix—vector form as

AP =S. (12)

The coefficient matrix A in equation (12) is a symmetric (N x N) block tridiagonal matrix of the
form

A, B, 0 O 0 0
B, A, B, 0 0 0
A=| 0 B, A, B, 0 0 |, (13a)
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where the individual blocks A; and B, are square (M x M) submatrices dependent only upon the
metric coefficients of the transformation given in equation (8). In particular, the diagonal blocks
of A are the symmetric (M x M) tridiagonal matrices given as

a, Gll,, 0 0 ... 0 0
Gll,, a, Gll,, 0 0 0

Ai = 0 Glll"z a,-‘3 Glll'_3 0 0 s (13b)
| o 0 0 0 ... Gllyp-y Gin

where the diagonal elements of A, are given as
ai‘j = - (Gzzﬂ,_ 1.j + Glli’j_ 1 + Gll,_l + GZZBM) (13(:)
Further, the off-diagonal blocks of A are the (M x M) diagonal matrices given as

G228; ,
G228, ,

=
I

G228, . (13d)

G228,

To arrive at the form of the matrix—vector equation represented by equation (12), the unknown
solution field ¢; ; has been arranged as a block vector P such that the individual block entries of P
are the column vectors of the matrix ¢; ;. This is expressed as

P=(P,P,,..., Py, (14a)

where
Pi= (d’i,u ¢i.2y s ey ¢K.M)T' (14b)

Thus the block vector P contains a total of (N - M) unknowns. Similarly, the source vector S is
given as

S=(8,,8,,. ..,SN)T, (15a)
where
Si=1(4i,1,4i,2> - -"qi.M)T (15b)
with
q9i,; = (Afz)2 Gi,js(,j -0y Gzzﬁo.jdo.j — Oin 622ﬂ~,jd~ +1,j
_61jGIIi.0di.0_6Mleli.Mdi,M+l‘ (ISC)

Here 0,, is the Kronecker delta function.

Equation (13) shows that each diagonal block element A; of the matrix Dirichlet Poisson
operator A is itself diagonally dominant. Also, since the metric coefficients of equation (8) are
always positive for any admissible co-ordinate transformation, each block element A; will be
negative definite and, consequently, non-singular. Such a symmetric block tridiagonal matrix,
whose diagonal blocks are tridiagonal submatrices and whose off-diagonal blocks are diagonal
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submatrices, is very well suited for efficient direct inversion by the BGE technique of Osswald and
Ghia'* as described next.

3.3.2. The BGE technique for the Dirichlet Poisson problem. The block Gaussian elimination
technique is an extension of the Gaussian elimination procedure to matrices whose individual
elements are themselves matrices or blocks. The efficiency of the block elimination approach
is enhanced when the block matrix is sparse. The BGE technique provides the effective inversion
of an (N*M x N-M) matrix through the actual inversion of a predetermined sequence of
N (M x M) subproblems.

The BGE approach naturally divides itself into two separate calculation phases. In the first
phase a sequence of N (M x M) matrices is formed and individually inverted by simple scalar
Gaussian elimination. This phase is the most time-consuming part of the calculation and the
multiplication count performed shows that approximately [4(N)(M)? + 2(N)}(M)* — 3(M)?]
floating point multiplications are required to complete this phase for the Dirichlet Poisson
operator of equation (13a). Fortunately, this preliminary phase need be executed only once for a
given co-ordinate choice, its result being permanently stored as a series of coefficient matrices for
later use in the second phase of the block elimination procedure.

The second phase consists of the actual solution of the block matrix problem given by
equation (12) for a prescribed source term S through a set of recursion relationships. These
recursion relationships use the coefficient matrices precalculated in phase one and require
approximately [2(N)(M)? + 2(N)(M) — (M)?] floating point multiplications. This count
shows that the second phase of the procedure is far less time-consuming. Indeed, it is precisely
because only the second phase of the BGE procedure need be repeated to solve equation (12) for
various source terms that reasonable computational efficiency can be expected. This is particu-
larly true in the context of an unsteady Navier—Stokes calculation during which the Dirichlet
streamfunction Poisson problem must be solved many times in a given co-ordinate system for a
progression of updated source terms.

It is important to note that the difference between the technique of Osswald and Ghia'4
described above and the block Gaussian elimination algorithm given by Dorr!” is the recognition
of the natural splitting of the BGE method into two separate phases. Indeed, it is precisely this
splitting which allows the block Gaussian elimination procedure to remain competitive with
other techniques available for the solution of the Dirichlet Poisson problem for the streamfunc-
tion .

In view of this discussion, it should be stated that the combined ADI-BGE method developed
here is very well suited for studying unsteady flows governed by the unsteady Navier—Stokes
equations; it is also useful in obtaining time-asymptotic solutions of the steady Navier—Stokes
equations.

4. MODEL PROBLEM FOR INCOMPRESSIBLE SEPARATED FLOW

The separation phenomena caused by abrupt changes in flow geometries in internal flows are well
known. Any insight gained for this class of separated flows will lead to improved analyses and will
aid in developing effective design tools. In general, separated lows become unstable at relatively
moderate Reynolds number and an unsteady analysis which can accurately predict these types of
flows would be most desirable. The flow over a backward facing step inside a channel has been
used by many investigators as a model problem for viscous separated flow, owing to the simplicity
of the geometry. Careful experimental data?* 23 as well as numerical analyses?* 2% are available
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for this flow. Hence this configuration has also been used in the present study of incompressible
separated flow.

4.1. Details of Geometry and transformations

Figure 2 shows the configuration of a backward facing step inside a doubly infinite channel.
For brevity, the configuration will be referred to as a backstep channel. The origin of the physical
plane co-ordinates is placed at the location of the step transition. The channel height at the outlet
is chosen as the reference length L, and the mean outflow velocity is taken as the reference velocity
U,. Therefore the Reynolds number is defined as Re = p U, L,/ u. Clearly, this flow configuration
has a geometric similarity parameter H as shown in Figure 2. Here H is the ratio of the throat
opening or pre-transition channel height to the post-transition channel height and may be viewed
as a throttling mechanism for reference outflow conditions. The mean velocity U,, at inlet is
related to the outflow velocity by the relation U,, = U,/H. Thus, for fixed outflow conditions,
diminishing the throat opening, i.e. decreasing H, will increase the mean inflow velocity and,
subsequently, produce a larger separated flow field at fixed Re. Hence similarity for the backstep
channel requires not only Reynolds number equality but also equality of the throat opening ratio
H, which is bounded between 0 and 1.

4.1.1. Conformal transformation—Tg. The ‘natural’ co-ordinate system for the backstep chan-
nel is obtained using an analytical conformal transformation. This co-ordinate transformation is
not only convenient to align the boundaries of the channel with the new curvilinear co-ordinates,
but also allows accurate implementation of the boundary conditions while maintaining formali
second-order spatial accuracy. The desired conformal transformation Tj is given by the relation

z =%{ln[U+(U’— 1)12]— Hin[V + (V2 = 1)1/2]}. (16a)

The various quantities appearing in this cquation, as well as those used in subsequent definitions,
are given as

QW —(k+1) (k+ 1) W — 2 : 1)\2
= —-— == = e* k: _—
v k—1 v k—OW W=e" H)®
C=n'+in?, z=x+iy and i=J(—1). (16b)

This transformation maps the doubly infinite backstep channel geometry of Figure 2 onto a
doubly infinite strip [(n*, n?)| — 00 < n' < + 0,0 < n? < 1] in the conformal (n', n?) plane.
An additional transformation is needed to make the domain in the n! direction bounded for
computational purposes.

4.1.2. Grid-clustering transformation—T.. A second transformation is used to map this doubly
infinite strip in the (!, n?) plane onto a unit square in the computational domain R. Here two

d
¥ —— K____—————-—’/ w\\\ 4
] »
T 1
M" ,W TIIITIIT I T T T _—

X

Figure 2. Backstep channel geometry
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independent one-dimensional stretching transformations are used to provide the desired grid
clustering in the boundary layers and separated regions of the flow field. The use of two separate
1D stretching transformations provides the flexibility needed to resolve the multiple scales of this
flow problem. These grid-clustering transformations are given as

1 =y ot —ay 1
1 1 1 Z 17
'S 2n[tan ( D, )+tan ( D, +2, (17a)
1\ 2_ 4\ 1
52=[2tan<i>:| tan<" - 2>+§. (17b)

The parameters a; and «, represent the two ' locations where grid points are to be clustered in
the streamwise direction, while the parameters D, and D, control the degree of this clustering.
Similarly, the parameter ¢ controls the degree of gridpoint clustering in the normal direction. The
degree of clustering can also be interpreted in terms of a stretching ratio SR; e.g., for the normal
co-ordinate clustering,

_d@?)
d(n*)
4.1.3. Combined transformation—T =Ty T.. The metric coefficients given in equation (8) can

now be determined for the overall co-ordinate transformation, which is obtained by combining
the transformations 7 and T given in equations (16) and (17). The metric coefficients become

SR

n2=0,1

G = h?y,(n')7,(&?), (18a)
G11 = y,(n")/72(&?) (18b)
and
G22 = y,(&2)/y:(n"). (18¢)
The quantities y,(n') and y,(£?2) are defined as
D D
1y _ 1 2
it =2x (5= B =) )
and
2(&%)= 2ctan(1/2¢)/{1 + [2(&* — {)tan(1/2¢)]?}, (19b)
and h is the scale factor of the conformal transformation given as
dz
h = al (19¢)

For the overall transformation given in equations (18), y, is a function of ' only and y, depends
only on ¢2. In this sense the co-ordinate transformation is considered separable. Indeed, this was
expected because of the choice of the individual transformations T and T.. However, it should be
noted that the analysis developed here is valid even when the co-ordinate transformation is
merely orthogonal, i.e. neither conformal nor separable in the sense just stated.

4.2. Selection of transformation parameters to resolve multiple scales

For the backstep channel geometry as shown in Figure 2, the region extending from slightly
upstream of the backward facing step to the farthest reattachment point is referred to as the
‘transition’ region. In this region, convection dominates over diffusion. On the other hand, the
regions upstream and downstream of this ‘transition’ region become increasingly diffusion-
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dominated as the inlet and outlet sections at + oo of the channel are approached. In an
experimental study of the ‘transition’ region of the backstep channel geometry, Armaly and
Durst?*® have shown the existence of one or more separation bubbles in the channel, for a fixed
value of H, as the value of Re is increased gradually. If such a separated flow has to be computed
accurately, the scaling in the normal direction is no longer O(Re™ !/2). At high Re the correct
scaling®* for the separated flow around the separation points is O(Re™ 3/2) in the streamwise
direction and O(Re™ */8) in the normal direction.

In the grid-clustering transformation T five parameters («;, &,, D,, D, and SR) are embedded
in equation (19). These parameters facilitate, to a reasonable extent, the desired grid clustering in
the physical plane to resolve the multiple scales of this separated flow model problem. To resolve
the scales in the streamwise direction near the separation points, the parameters D, and D, are
chosen to provide the desired grid clustering around the proper locations «, and «,, such that the
separation scales O(Re™ 3/®) in the streamwise direction are appropriately resolved. The math-
ematical expressions which determine these four parameters are given as

In(k
(X2=061 +Cl<¥x_ol_ 0(1 ), (20b)
D1=<x1/tan|:2nm1A§1+tan"1<gi_—al)—tan"<g—2—)} (20¢)
D, D,
and
D, = (a; — a,)/tan[2nm, + (m, — my)AEL]. (20d)

Here m, is an integer denoting the number of A¢* intervals placed on the step height BO and m; is
the total number of A¢! intervals between the inflow boundary and point O. The quantity m, is
taken to be 1/2 in order to map the points B and O onto midpoints of A¢! intervals; this allows
for circumventing the singularity in the metric coefficients at these corner points. The values
selected for m, and m, are such that the resulting overall grid satisfies two requirements. First,
between the corner point B and the reattachment point X, the streamwise grid spacing is
required to be nearly uniform as the distance BX,, is a measure of the convection scale. Secondly,
the near-infinity diffusion scale must also be resolved. Hence the grid is stretched in the
streamwise direction only after the flow has become diffusion-dominated.

In the normal direction the parameter SR aids in resolving the scales O(Re ™ */%) around the
lower and upper separation points as well as the wall shear layers. The actual choice of a
particular grid for a given configuration is arrived at by numerical experiments with the grid
generator in which the various parameters are selected so as to yield the desired grid. The grid
distributions used in this study will be presented in the next section.

4.3. Asymptotic flow near channel infinities

The analysis to be presented here is valid for a class of internal flow problems in which the
normal co-ordinate 5% is bounded and, asymptotically at #* = F oo, the configurations have
straight inflow and outflow sections, with any desired shape of the connecting transition section.
The grid-clustering transformation 7, was selected so as to map the inflow and outflow boundary
conditions at + oo to the finite values ¢! = 0 and &! = 1 respectively in the computational co-
ordinates. Consequently, 1/5! becomes a small parameter in the proximity of the inflow section,
where £! = 0, and near the outflow section, where ¢! = 1. With the use of a small parameter
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defined as
e=1/n}, 21)

Osswald?® has determined the scale factor h near the inflow and outflow sections and has shown
that

k-1
as n' - — c0: h=H — Hcos(nn? )( )e"" + 0(e™¢)? (22a)

2k
and

k—1
asn! > 4+ 00 h=1- cos(nn2)<—2— )e"‘" + O0(e™ ™), (22b)

Thus the backstep channel approaches a straight channel near the inflow and outflow sections in
an exponential manner. Near these sections the function y, of equation (19a) takes the form

2n 1\> 4n(a;D, +a,D,) (1
= — 1 - — _ 1
=D, +D2<e> D, +D,)7 \e)ToW 23)

whereas the function ¥, of equation (19b) remains unaffected. Considering only the leading term
in equation (23) yields y, = I',(1/¢)?, where I = const. This asymptotic behaviour of y, is
representative of the wide class of internal flow problems referred to at the beginning of this
subsection.

The grid-clustering transformation T maps the region — o0 < ' < oo onto the interval [0, 1]
in the &! direction in such a manner that n! approaches infinity like 1/e. Hence the metric
coefficients given in equations (18) take the form

G=h2T_y 12—0 ! (24a)
<t /2 c ¢ s
2
Gll=r—°°<1> —0<1> (24b)
Y2 \ ¢ €

and
G22 = F_ (e)*> + O(&%), (24¢)
where -
. Y1
hy= lim [h and I',= lim 25a,b
{'-.0,1[ ! q—o+oo[( 1)2] D, +D, - )

In the light of this analysis, the governing differential equations (4) and (5) take the following
form near upstream and downstream infinity:

e o Jar P o
l:hz;z +0(e )} [yr—b?— <i)a_¢] - o, (26a)
vl oo [ (oa) (o)
tliiro | o]

1 &2 5] 0 [ Te d0 1\ ow
+ﬁl:h;rw + O(e ):laé [Wﬁi_0<g)af_z] (26b)
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Since 5! is a function of ¢ only,

O y= 20 (YT ) oy, = —arLe 4 0(c) (272)
5 4z m g :
and
o (1
Thus equations (26) simplify to the following form near the channel inflow and outflow sections:
dw 1 011 dw
o ReRT e | O o
and
1 a1 oy
hgyzaé_Z[Eaé_Z}hww“)‘ (28b)

It is observed that equations (26) are &2 diffusion-dominated near channel inflow and outflow
sections. The most significant terms, namely, those O (1) as well as O (&), are associated with the &2
diffusion operator, whereas the convection terms are O(e?) and the ¢! diffusion terms are O (¢3). If
terms O(¢) are to be considered negligible in the asymptotic equations (27), #' must be large
enough such that n! ~ O(1/¢). For large n' the present class of geometrical configurations is such
that x! ~ #'. Hence there exist regions O(1/¢) in the physical plane near the inflow and outflow
boundaries in which the flow simply diffuses in the ¢2 direction normal to the channel walls.
These regions isolate the infinity boundaries from the convection-dominated transition region
since any disturbance entering these regions is totally damped within the regions. Equations (28)
enable plane Poiseuille flow to be established near the inlet and outlet sections, without any
special treatment of the interior difference operators at these boundaries.

4.4. Boundary and initial conditions

To maintain consistent second-order spatial accuracy of the overall solution, the wall vorticity
boundary conditions must also be implemented with second-order spatial accuracy. The earlier
analysis of Ghia et al.2” was generalized by Osswald?® to provide the second-order-accurate form
of the wall vorticity boundary condition. This analysis expands the function 8y /d¢? at the
midpoint of a boundary cell using a Taylor’s series expansion in terms of the function and its
derivatives at the boundary itself. The consistent treatment of the higher derivatives of dy /¢ % at
the boundary, including the use of the reduced form of the governing equation (5), leads to the
desired expression for the wall vorticity. Thus the boundary conditions on the lower wall ¢ = 0
are

[¢L+3 _ 3¢L+2 “21¢L+1 +23¢L]

(AE2)*[3GLwp + Gy 10411 =8G1 )y 2%

P P
—(Aczya{—l[czz%]“l + O(AE?) (292)
and

¥, =0. (29b)

A similar expression can be obtained for the vorticity at the upper wall ¢2 = 1, where the
streamfunction ¥, = 1.
The boundary conditions for w and y at inflow and outflow sections are determined from the
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asymptotic form of the governing differential equations. These are obtained from equations (28)

as
dw 1 J 1 dw
e _ 2 30

ot ~ Rehy, oe? [yz 652] (30a)
and

1 @ 1 oy

WLy, [yz % ] = (00
For consistency with the numerical solutions in the interior, numerical rather than analytical
solutions of the steady form of equations (30) are used to provide the boundary conditions for w
and ¥ at the inflow and outflow sections. The appropriate wall boundary conditions for these
asymptotic equations are obtained from equations (29) by dropping out the ¢! derivative term.
Equations (30a, b) were solved simultaneously using a block Gaussian elimination method, which
in effect is identical to solution by a modified Thomas algorithm for this coupled set of equations.
For the initial conditions the flow inside the backstep channel was assumed, everywhere, to
consist of the numerical solution of the steady form of equations (30) obtained at ! — + 0. In
the physical plane this corresponds to parabolic velocity distributions at x' — + oo, while in the
region of the backstep these are scaled by the conformal transformation scale factor. This

procedure avoids discontinuities in the initial conditions at the backstep.

5. RESULTS FOR BACKSTEP CHANNEL

The unsteady Navier—Stokes analysis and solution procedure discussed in Sections 2 and 3 are
applied to the flow in a doubly infinite backstep channel. This separated flow problem has been
classified by Kumar and Yajnik?® to have a streamwise length scale L, of O (Re) and, in the limit
of high Reynolds number, is governed by parabolic equations. This implies that the upstream
influence is confined to a relatively short distance, whereas the extent of the region of downstream
influence increases with Re. The singularity at the sharp convex corner, as well as the difficulties
associated with the simulation of high-Re flows, have been addressed in the present analysis by
exercising care in the formulation of the discretized problem. Hence the results obtained are
anticipated to be accurate. For all of the flow configurations listed in Table I, the predicted results
have asymptoted to steady state.

5.1. Quality of grid

Application to flow configurations for which experimental data are available, together with the
fact that the Navier—Stokes equations (4) and (5) asymptote to the diffusion-dominated equa-
tions (30) near the inflow and outflow boundaries, aided in the choice of appropriate values for
the parameters m; and m;. Numerical experiments with various grids for these configurations
enabled careful examination of the length scales near the separation points, as well as the near-
infinity scale. This latter scale is assumed to be correctly represented if the flow solution in the
interior smoothly approached the inflow and outflow boundary values. This requires that grid
points be appropriately distributed in the diffusion-dominated regions near these boundaries. The
degree to which the &2 diffusion coefficient G,, /G Re dominates over the convection coefficient G
in the grid cells adjacent to these boundaries provides a quantitative measure of the appro-
priateness of the near-infinity grid point distribution. Hence a quantity Q is defined as

convection _ max [ Re ] 61)
near infinity G1 IN, Jj

£2 diffusion

0=




1039

INCOMPRESSIBLE MASSIVELY SEPARATED VISCOUS FLOWS

66-L 96-C1 Lev 6¢-9 $9¢ 0021 009 IIIA

SL9 St-11 oLY 809 8Ly ¥101 LOS ITA

¢ZI8INQ pue ffeulty /7€ L SOy 96-¥ £8¢ 009 00¢ S158%0 S8160 IA
- - - X483 (84} 00t 0s1 A

Youmed - - — 16:€ 6CC 916 8SY Al
wcmn«:mnnoﬁ - - - 0s-T Y41 00s 0ST €EEEE0 L9999-0 11

- — - 69-1 (43 [4:14 114! I

¢cBISOUN pue miqny — — - 690 001 0081 006 00001-0 000060 I
UIJY Yr—=S7 S Y7 7 Say Aoy Yy y H uoneandyuo)

suoneIndguos Mop snourea 1of sisjawered ‘[ 2[qelL



K. N. GHIA, G. A. OSSWALD AND U. GHIA

1040

S°6
19

L}

t

]

0
€
T

]

X

u

w

L1

S

.

suonnquysip pusd jeordA] ¢ aansigy

HLINIT G3ZITUNDISNIWIGNON - X

g°11 0°0r1 0°6 Qg 0L 0°9 0°§ G h ae 0°e 01 00 0°I1-

A ¥ T F T T T T T T T T T T ——V
0Tx.'¢=b0 & Gt b Les, , 00
o1 =ws eI T e i focy |

‘(EcceT)  Ef g LHiH i E o
‘68¥15°0 =H : o
(9)
03IZTTUNOISNAWIANDON - X
0°s 0°h G°¢g 0°e 0"t 0°0 0 I-
AF._ Ll T T T T T —-V
S Ll IIIIIIVi ; 00
ot e e EE =
y=0TXT°G =D E= S
‘9T = 84S b= S = )
‘(ee158) B mE=cs JEEEE £
‘G8YTS 0 =H EEoi e e s EE ==
(®) = T~ SRR y Aaam ot



INCOMPRESSIBLE MASSIVELY SEPARATED VISCOUS FLOWS 1041

and is required to be as small as possible near £! = 0 and 1. In the present study Q was monitored
for each grid distribution used and maintained to be 0(10~ ®) or less. Two typical distributions
with 85 x 33 and 195 x 33 grid points used in some of the present computations are shown in
Figures 3(a) and (3b).

5.2. Criteria for steady state, accuracy and computational efficiency

The steady state results were generated, wherever possible, as the time-asymptotic limit of the
unsteady analysis. The criterion used to define the steady state is given as

Vi /¥

+1
i Jj At

<g;  with  g,=107%, (32)
max
where f represents either @ or i and the subscript max denotes the maximum value encountered
in the grid A. It was observed that, in general, i converged much more rapidly than w. Much
before this criterion was satisfied everywhere, the flow in the ‘transition’ region settled at its steady
state valucs, while the flow in the regions near the outflow boundary continued to adjust at rather
slow rates until it finally satisfied equation (32). Hence the calculations were continued for almost
twice as many characteristic time units as those required for steady state to be achieved in the
transition region. In each case the numerical procedure continued to yield consistent and stable
solutions.

Central differences are used throughout the flow field, so that the overall accuracy of the
present method is O [ At, (AE')?, (AE?)?]. By satisfactorily resolving the multiple scales present
in the problem, the resulting solutions are totally wiggle-free.

The relative computational efficiency of the present algorithm was measured in terms of the
CPU time 1 required to advance the solution by one time step per spatial grid point, i.e.

CPU seconds
T= T - k)
number of mesh points x number of time steps

where 1 represents the ‘computational effort’. For the present algorithm t = 2:67 x 10~ % s for the
AMDAHL 470 V/7 computer. The corresponding value for the implicit method of Beam and
Warming?2® is 44 x 10~ * s for the compressible Navier-Stokes equations using the CDC 7600
computer.

5.3. Comparison of steady state flow results with experimental data

Table 1 shows the eight flow configurations which have been analysed in the present study.
These include the configurations for which experimentai data are available from Denham and
Patrick?? or Armaly and Durst.2* The published experimental data provide one or more of the
following results:

(i) stream line contours
(i) velocity profiles at various streamwise locations using Cartesian co-ordinates
(iii) locations of separation and reattachment points.

The primary separation bubble off the backstep is characterized by the length of the eddy, ie.
by its corresponding reattachment length. This reattachment length is plotted versus Re in
Figure 4(a), with the throat-opening ratio H as a parameter. The present results show a
consistently longer primary reattachment length than was obtained cxperimentally by Denham
and Patrick.22 This discrepancy can be attributed to the fact that Denham and Patrick?? placed
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an asymmetric flared device along the lower wall of an otherwise straight channel to form the
backward facing step. As a result, the inlet section of their experimental configuration was
relatively short, with Ly /Hy = 3-33. Hence their velocity profiles just prior to the step show an
asymmetric distortion from the very nearly parabolic velocity profiles seen in both the present
numerical simulation and the experimental study of Armaly and Durst.?® Indeed, the severity of
the distortion in the inflow conditions of Denham and Patrick?? increases with increasing
Reynolds number. Furthermore, Denham and Patrick?? have implied that the noticeable

o—7T—7 T T T T 1

Re x 10_2

Figure 4(a). Reattachment length of separation bubble on lower wall

o 1 2 3 : 3 i 7 O 3
Rext0?

Figure 4(b). Circulation regions at the upper and lower walls (after Reference 23)
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LEGEND FOR FIGURES %a AND 4c

Ref. Denham & Armaly &

; Present  patrick {22] Durst [23]

0.51485  —fy— .

0.66667 —QO~— - -@-

0.90000 a

2(

18—

16—

14

121~

10

0 i | 1 | } 1 i
0 1 2 3 4 5 6 7 8
Req X 10_2

Figure 4(c). Similarity study for reattachment length

skewness of their inlet conditions could result in a tendency to shorten their measured reattach-
ment lengths; this observation is consistent with the results of Figure 4(a). Finally, as seen from
Table I, no secondary separation bubble forms along the upper channel wall for configurations
with H = 0-66667. This result is consistent with the experimental observations of Denham and
Patrick?? up to the highest Reynolds number Re = 458 or Reg = 229 used in their investigation,
where Reg is based on hg.

A direct comparison of the results of the present numerical analysis with the laser—Doppler
experimental data of Armaly and Durst?? is also presented in Figure 4. As seen here, the present
two-dimensional steady state results are in excellent agreement with the experimental data of
Armaly and Durst?3 provided that only the primary separation bubble exists within the flow field.
Indeed, the agreement is excellent provided Re < 225 or, equivalently, Reg 5 212. More precisely,
Table I indicates that the first appearance of the secondary separation bubble is bracketed
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between Re = 150 and Re = 300 and can be obtained by graphical extrapolation to be Re = 200.
Since Re = 200 corresponds to Reg = 189, the present numerical prediction for the first appear-
ance of the secondary separation bubble is in excellent agreement with the experimentally
observed value of Reg ~ 190 quoted by Armaly et al.?°

However, for Re > 225 the present two-dimensional results depart from the experimental
observations of Armaly and Durst.2® This departure is to be expected since Armaly et al.3° have
found evidence of three-dimensionality in the earlier data of Armaly and Durst?? for Re 2 200.
Indeed, they found that the onset of three-dimensionality coincided with the first occurrence of
the secondary separation bubble. A possible mechanism for this abrupt change in flow structure is
now presented.

Nominally, two-dimensional boundary layer flows subject to locally destabilizing concave
curvature of the boundary wall arc known to be susceptible to the classical Taylor—Gortler
instability leading to the formation of spanwise-periodic pairs of counter-rotating vortices whose
axes are aligned with the flow direction (see e.g. Smith3'). Furthermore, Inger3? suggested that
such a vortex disturbance mechanism could be a common phenomenon near two-dimensional
separation points, whenever the dividing streamline is inclined to the direction of the main flow
by more than just a few degrees. By referring to Figures 5(c) and 5(d), it can be seen that such a
condition on the dividing streamline is first met with the appearance of the secondary separation
bubble along the upper channel wall. Below this ‘critical’ point, only the primary separation
bubble exists within the channel; however, its dividing streamline separates essentially parallel to
the main flow direction and is then subjected to stabilizing convex curvature as it drops and
impinges upon the lower channel wall.

1.0 e N N N N
(a)
v Re = 900, H= 0.90000
| (85,33), AY=0.0004 In Bubble

0.0 T

<‘1 1 1 1 1 1. 1 1N

1.0 0.0 1.0 2.0 3.0 u.0 5.0
1.0

———— (b)
, = Re =146, H=0.66667
% = (65,33), Ap=0.0054

0.0

<11 1 i 1 1 1 LB

1.0 0.0 1.0 2.0 3.0 4.0 5.0
‘ 0 . AN SN AN N W . ¥ AN AN AN N AN AN AN

(c)
Re= 458, H=0.66667
y : (85,33), Ay=0.0020
“§§§§i3-:u K =

ool T cmaao

a1 1 3 1 1 1 [

1.0 0.0 1.0 2.0 3.0 u.0 5.0

(d)

1.0 Re= 507, H=0.51485
UYO (195,33), Ay =10.0048

&4 L 4 s L L L 1 1 1 1 L t 1 i Lp
~-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11,0 12.0 13.0 14.0
X - NONDIMENSIONALIZED

Figure 5. Steady state streamfunction contours; Ay = 0-1
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Such a vortex instability mechanism is consistent with the onset of three-dimensionality as
described by Armaly er al.*>® Indeed, the increasing difference between the present calculations
and measurements above Re = 225 can be interpreted as confirming the increasingly three-
dimensional character of the experimental flow field.

An alternative mechanism also leading to three-dimensional effects in a nominally two-
dimensional flow field is the growth and eventual interaction of the boundary layers on the
sidewalls of the experimental apparatus. However, such an effect would tend to diminish with
increasing Reynolds number as the sidewall boundary layers would then tend to become thinner.
Thus a careful comparison between experiment and a two-dimensional flow calculation has led to
important insight into the nature of separated viscous flows; this insight could have easily been
missed or misinterpreted if one relied wholly on the experiment or on the calculations alone.

Additional support for the hypothesis that a Taylor—Gértler vortex instability mechanism
associated with the secondary separation region is primarily responsible for the discrepancy
between the measurements of Reference 23 and the present two-dimensional calculations for
Re 2z 225 can be obtained from the resuits presented in Table I. Specifically, it is suggested that
the additional mixing which would accompany a developing Taylor-Gaortler instability would
tend to delay the upper wall separation, thus causing the secondary separation point L, to occur
farther downstream than would be predicted on the basis of a strictly two-dimensional analysis.
This would in turn decrease the blockage effect caused by the secondary separation bubble, thus
allowing the primary separation bubble to elongate beyond the length predicted in the strict
absence of any three-dimensional disturbance effect. Indeed, as seen in Figure 4, the flow exhibits
exactly these characteristics for Re in the range 225-600.

5.4. Steady state results for various backstep flow configurations

The steady state results are presented here for flow configurations I, I, IV and VII with Rep, of
1800, 292, 916 and 1014 respectively. Figures 5(a) to 5(d) show the streamline contours for these
configurations. As seen in Figure 5(a), configuration I with Rep = 1800 is the one with the
smallest separation bubble and hence is relatively simple to compute. This configuration was used
by Rubin and Khosla3® in the development of their coupled strongly implicit method.
Figures 5(b) and S(c) show the streamline contours for configuration Il with Rep = 292 and
configuration IV with Rep = 916 respectively. These configurations were used by Denham and
Patrick 22 in their experimental study. As expected, the length of the separation bubble grows with
increase in Re. Finally, the streamline contours are presented for configuration VII with
Rep, = 1014 in Figure 5(d). This configuration was used by Armaly and Durst?3 in their study.
To the authors’ knowledge, the present results constitute the first detailed results computed for
this flow problem showing a separation bubble on the upper wall. Results for these flows
were first presented by the authors in 1983.34 Also, persistently unsteady results are given by
Osswald et al® for H = 0514 85, Rep = 4000. Kim and Moin®¢ applied a fractional step
method to the backstep channel flow problem and showed the secondary separation on the
upper wall for Re = 600.

The corresponding vorticity contours for the four configurations considered in Figure 5 are
shown in Figures 6(a) to 6(d). As anticipated, a heavy concentration of contour lines occurs near
the sharp convex corner, an indication of the presence of high vorticity gradients in this region of
maximum generation of vorticity. In the ‘transition’ region the vorticity contours are swept
downstream by the strong convection effects.

Figures 7(a) to 7(d) provide the transverse profiles of the total velocity vector, along £? lines, at
selected streamwise locations. A region of reversed flow is observed downstream of the step near
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(a)
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Figure 6. Steady state vorticity contours; Aw = 2:0

the lower wall for all of these configurations. Configuration VII with Rep, = 1014, shown in
Figure 7(d), exhibits a large region of reversed flow near the upper wall also.

5.5. Transient results for backstep flow configuration VIIT

The transient results for flow configuration VIII with Rep, = 1200 are presented in Figure 8.
Starting from time ¢t = O, four values of the characteristic time, namely 4, 40, 112 and 421, are
chosen to depict the time history of the flow as it approaches steady state. The flow in the
transition region reaches close to its steady state value at about ¢ = 76, but the adjustments
taking place near the outflow boundary require ¢ = 421 in order to satisfy the steady state
criterion of equation (32). Figures 8(a) to 8(d) show the streamline contours of this transient flow
as it reaches steady state, while Figures 9(a) to 9(d) show the vorticity contours. As seen from the
streamfunction contours of Figure 8 and especially from the vorticity contours of Figure 9, the
early disturbance for ¢t < 4 is localized near and just downstream of the backward facing step.
Indeed, for ¢t = 4 several large-scale coherent eddy structures have formed in the wake of the
backward facing step along both the upper and lower channel walls. These eddies are seen to have
transverse length scales of the order of the step height and penetrate approximately five outlet
channel heights downstream of the step. In addition, the vorticity contours of Figure 9 indicate
that a region of high convective mixing extends approximately five characteristic length units
downstream of the step at t = 4.
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Figure 7. Steady state, total velocity vectors
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Figure 8. Transient streamfunction contours for Re=600; Ay =0-1
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Figure 9. Transient vorticity contours for Re = 600; Aw = 2:0

By the time ¢t = 40 well developed primary, secondary and tertiary separation bubbles have
been established along the upper and lower channel walls respectively, while the region of high
disturbance has convected beyond x = 20. The remnants of the vortex street structure have been
convected far downstream and are rapidly diminishing in intensity. By the time ¢ = 112 the flow
field has nearly achieved steady state, with well defined primary and secondary separation
bubbles established along the channel walls downstream of the backward facing step. These
separation bubbles continue to gradually diminish in intensity as they elongate in the down-
stream direction, until at ¢ = 421 the steady state criterion of equation (32) is met and no further
change is observed in the flow structure. At t = 421 the maximum absolute change occurs in the
vorticity field near the outflow boundary, with the streamfunction and the near-step region of the
flow having stabilized much earlier. Finally, the transverse profiles of the total velocity vector,
along &2 lines, at selected streamwise locations, are shown in Figure 10. Two regions of strong
reversed flow are observed both on the lower and the upper walls.

Velocity Scale 11

4 L 1 1 b
-1.00,0 1.0 2.0 3.0 4.0 S.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 i4.D
X - NONDIMENSIONARLIZED

S
Q o
| e

Figure 10. Steady state, total velocity vectors for Re = 600
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6. CONCLUSIONS

An analysis has been developed, using the unsteady Navier-Stokes equations in generalized
curvilinear co-ordinates, to study 2D incompressible separated flows. The discretized problem is
formulated using central differences for the spatial derivatives, thus avoiding artificial viscosity.
The ADI method has been used to solve the transport equation, whereas the BGE method is used
to solve the Dirichlet Poisson problem. The overall accuracy of the numerical solution is
O[At, (AL1)% (ALY ]

The numerical method developed is applied to the separated flow inside a backstep channel.
The results of the present analysis are verified extensively by comparison with the available
experimental data for Reg ranging from 72 to 565. For the configurations with only one
separation bubble at the lower wall, there exists a similarity with respect to the backstep channel
geometry. Hence the reattachment length L, /h, of the primary separation bubble on the lower
wall, for various geometries, collapses into a single curve when plotted versus Reg. On the other
hand, the configurations with an additional separation bubble at the upper wall show a marked
change in the reattachment length L, of the lower wall separation bubble. To the authors’
knowledge, similar results have not been previously reported in the literature.

The unsteady analysis provides an accurate and efficient determination of the transient flow in
the backstep channel. The shedding of vortices at the corner of the step, the formation of
additional separation bubbles at the lower wall and the occurrence of the upper wall separation
bubble are observed in the present results, which provide the detailed time-dependent structure
for this flow. The analysis of this separated flow in the transitional regime of Re appears feasible
with this unsteady analysis. Osswald et al.®” have employed these efficient direct inversion
techniques to solve the three-dimensional unsteady incompressible Navier—Stokes equations
using a velocity—vorticity (V, o) formulation. This three-dimensional work is fully second-order-
accurate in both time and space. Efforts to upgrade the temporal accuracy of the present 2D
method to second order are currently underway. Also, the Reynolds stresses are being evaluated,
from first principles, using the complete knowledge of the instantaneous motion as well as the
mean motion. Ghoniem and Sethian®® have provided turbulence statistics for these flows using
their random vortex method.
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